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Space of probability measures

Notation

K - a (Hausdorff) compact space;

N = {1, 2, . . .};
P(K ) - space of probability Borel measures on K .

Weak* convergence

A sequence (µn) from P(K ) is weak∗ convergent to µ if∫
K

f dµn →
∫

K
f dµ

for each continuous f : K → R.
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Weak* convergence in 0-dim spaces

Weak* convergence

A sequence (µn) from P(K ) is weak∗ convergent to µ if∫
K

f dµn →
∫

K
f dµ

for each continuous f : K → R.

Remark

If K is zero–dimensional, then µn converges weakly to µ if and
only if

µn(A)→ µ(A)

for every clopen subset A ⊆ K .
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Levels of complexity in P(K)

Sequential closures

h : K → h[K ] ⊆ P(K ) defined by h(x) = δx is a
homeomorphism;

S0(K ) = conv({δx : x ∈ K});

let S1(K ) be the weak∗–sequential closure of S0(K );

generally: let Sα(K ) be the weak∗–sequential closure of⋃
β<α Sβ(K );

S(K ) = Sω1(K ).
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A measure outside the sequential closure

Remark

If µ ∈ S(K ), then it has a separable carrier, i.e. a closed set
F ⊆ K with µ(F ) = 1 (not necessarily the support).

Corollary

Let R = Bor([0, 1])/Null be the measure algebra and let R be its
Stone space. Then the standard measure λ on R is in P(R) but
not in S(R).
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Uniform distribution

Fact

A measure µ is in S1(K ) if and only if it has a uniformly
distributed sequence.

Theorems

Many spaces K have property: P(K ) = S1(K ). E.g.

scattered spaces;

metric spaces;

2ω1 [Losert, 79];

2c [Fremlin, 00’s].
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Problems

Theorem (Plebanek, PBN)

If K is Koppelberg compact, then P(K ) = S(K ).

Problem 1

Is there a space K such that

S1(K ) 6= S(K )?

Problem 2

Is there a space K such that

S1(K ) 6= S(K ) = P(K )?
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Asymptotic density

Asymptotic density function

We say that A ⊆ N has a density if the limit

lim
n→∞

|A ∩ {1, 2, . . . , n}|
n

= d(A)

exists.

Density and weak∗ convergence

If every element of a Boolean algebra A ⊆ P(N) has a density,
then for µ defined on the Stone space K of A by µ(Â) = d(A) for
each A ∈ A we have

µ(Â) = lim
n→∞

δ1(A) + . . .+ δn(A)

n
.
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each A ∈ A we have

µ(Â) = lim
n→∞

δ1(A) + . . .+ δn(A)

n
.

Piotr Borodulin–Nadzieja (Wroc law) Sequential properties of measures



Preliminaries
Problems

An example

Asymptotic density

Density and weak* convergence

If every element of a Boolean algebra A ⊆ P(N) has a density,
then for µ defined on the Stone space K of A by µ(Â) = d(A) for
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µ(Â) = lim
n→∞

δ1(A) + . . .+ δn(A)

n
.

Corollary

µ ∈ S1(N) ⊆ S1(K ).

Piotr Borodulin–Nadzieja (Wroc law) Sequential properties of measures



Preliminaries
Problems

An example

Asymptotic density

Density and weak* convergence

If every element of a Boolean algebra A ⊆ P(N) has a density,
then for µ defined on the Stone space K of A by µ(Â) = d(A) for
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Limit of densities

Relative density

Fix a sequence (Bn)n∈N of infinite and pairwise disjoint subsets of
N such that

⋃
n Bn = N.

Let n ∈ N. Enumerate Bn = {b1 < b2 < . . .}. For A ⊆ Bn let

dn(A) = d({i : bi ∈ A}).

Limit of densities

Let d ′(A) = limn→∞ dn(A) provided this limit exist. If each
element A of a Boolean algebra A ⊆ P(N) is such that d ′(A)
exists, then µ ∈ P(Stone(A)) defined by

µ(Â) = d ′(A)

is in S2(N)
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The domain of measure

Definition

Let F be the filter of density 1 sets and let C be an isomorphic
image (via ϕ) of the Cantor algebra alg(2<ω) such that

d(ϕ(σ)) = 1/2|σ|

for each σ ∈ 2<ω.

Definition

For each n ∈ N , Bn = {b1 < b2 < . . .} and A ⊆ N let

An = {bi : i ∈ A}

Fn = {F n : F ∈ F}

Cn = {Cn : C ∈ C}
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First step

Definition

Let Bn be the Boolean algebra generated by Cn and Fn, n ∈ N.
Let U consist of sets U ⊆ N such that

U ∩ Bn ∈ Bn for each n;

limn→∞ dn(U ∩ Bn) = 1.

Let A0 be the Boolean algebra generated by U (and K0 - its Stone
space).

Properties

U is an ultrafilter on A0;

µ = δU ;

µ ∈ S2(N);

µ /∈ S1(K0 \ {U}).
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Second step

Theorem (Fremlin)

There is a monomorphism mod F

ψ : R→ Sets with density

such that d(ψ(R)) = λ(R) for each R.

Final step

Extend A0 to A by all sets of the form⋃
n

(ψ(R))n

for every R ∈ R \ {0, 1}. Let K be its Stone space.
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The result

Corollary

Let D ⊆ K be the (closed) set generated by U .

µ ∈ S2(N);

µ /∈ S1(K \ D);

µ /∈ S1(D);

finally, µ /∈ S1(K ).

Remark

In the same manner for every α < ω1 we can produce a space K
and a measure µ such that µ ∈ Sα(K ) \ Sβ(K ) for each β < α.
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Better example under CH

Theorem (Plebanek)

Under CH there is a space K such that

there is µ ∈ S2(K ) \ S1(K )

S(K ) = P(K ).
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The end

Thank you for your attention!

Slides and a preprint concerning the subject will be available on

http://www.math.uni.wroc.pl/~pborod
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