Sequential properties of measures

Piotr Borodulin-Nadzieja (Wrocław)

Winterschool 2011, Hejnice

joint work with Omar Selim (Norwich)

- ∢ ≣ >

Space of probability measures

Notation

• *K* - a (Hausdorff) compact space;

•
$$\mathbb{N} = \{1, 2, ...\};$$

• P(K) - space of probability Borel measures on K.

Weak* convergence

A sequence (μ_n) from P(K) is weak^{*} convergent to μ if

$$\int_{K} f \, d\mu_n \to \int_{K} f \, d\mu$$

for each continuous $f: K \to \mathbb{R}$.

(ロ) (同) (E) (E) (E)

Space of probability measures

Notation

• *K* - a (Hausdorff) compact space;

•
$$\mathbb{N} = \{1, 2, \ldots\};$$

• P(K) - space of probability Borel measures on K.

Weak* convergence

A sequence (μ_n) from P(K) is weak^{*} convergent to μ if

$$\int_{K} f \, d\mu_{n} \to \int_{K} f \, d\mu$$

for each continuous $f: K \to \mathbb{R}$.

イロン イヨン イヨン イヨン

Weak* convergence in 0-dim spaces

Weak* convergence

A sequence (μ_n) from P(K) is weak^{*} convergent to μ if

$$\int_{K} f \, d\mu_n \to \int_{K} f \, d\mu$$

for each continuous $f: K \to \mathbb{R}$.

Remark

If ${\cal K}$ is zero–dimensional, then μ_n converges weakly to μ if and only if

$$\mu_n(A) \to \mu(A)$$

for every clopen subset $A \subseteq K$.

イロト イポト イヨト イヨト

Levels of complexity in P(K)

Sequential closures

- h: K → h[K] ⊆ P(K) defined by h(x) = δ_x is a homeomorphism;
- $S_0(K) = conv(\{\delta_x : x \in K\});$
- let $S_1(K)$ be the weak*-sequential closure of $S_0(K)$;
- generally: let $S_{\alpha}(K)$ be the weak*-sequential closure of $\bigcup_{\beta < \alpha} S_{\beta}(K)$;
- $S(K) = S_{\omega_1}(K)$.

イロン イ部ン イヨン イヨン 三日

Levels of complexity in P(K)

Sequential closures

- h: K → h[K] ⊆ P(K) defined by h(x) = δ_x is a homeomorphism;
- $S_0(K) = conv(\{\delta_x : x \in K\});$
- let $S_1(K)$ be the weak*-sequential closure of $S_0(K)$;
- generally: let $S_{\alpha}(K)$ be the weak*-sequential closure of $\bigcup_{\beta < \alpha} S_{\beta}(K)$;
- $S(K) = S_{\omega_1}(K)$.

イロン イ部ン イヨン イヨン 三日

Levels of complexity in P(K)

Sequential closures

- h: K → h[K] ⊆ P(K) defined by h(x) = δ_x is a homeomorphism;
- $S_0(K) = conv(\{\delta_x : x \in K\});$
- let $S_1(K)$ be the weak^{*}-sequential closure of $S_0(K)$;
- generally: let $S_{\alpha}(K)$ be the weak*-sequential closure of $\bigcup_{\beta < \alpha} S_{\beta}(K)$;
- $S(K) = S_{\omega_1}(K)$.

イロン イ部ン イヨン イヨン 三日

Levels of complexity in P(K)

Sequential closures

- h: K → h[K] ⊆ P(K) defined by h(x) = δ_x is a homeomorphism;
- $S_0(K) = conv(\{\delta_x : x \in K\});$
- let $S_1(K)$ be the weak^{*}-sequential closure of $S_0(K)$;
- generally: let $S_{\alpha}(K)$ be the weak*-sequential closure of $\bigcup_{\beta < \alpha} S_{\beta}(K)$;

•
$$S(K) = S_{\omega_1}(K)$$
.

(ロ) (同) (E) (E) (E)

A measure outside the sequential closure

Remark

If $\mu \in S(K)$, then it has a separable carrier, i.e. a closed set $F \subseteq K$ with $\mu(F) = 1$ (not necessarily the support).

Corollary

Let $\Re = Bor([0,1])/Null$ be the measure algebra and let R be its Stone space. Then the standard measure λ on R is in P(R) but not in S(R).

・ロト ・回ト ・ヨト ・ヨト

A measure outside the sequential closure

Remark

If $\mu \in S(K)$, then it has a separable carrier, i.e. a closed set $F \subseteq K$ with $\mu(F) = 1$ (not necessarily the support).

Corollary

Let $\mathfrak{R} = Bor([0, 1])/Null$ be the measure algebra and let R be its Stone space. Then the standard measure λ on R is in P(R) but not in S(R).

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Uniform distribution

Fact

A measure μ is in $S_1(K)$ if and only if it has a uniformly distributed sequence.

Theorems

Many spaces K have property: $P(K) = S_1(K)$. E.g.

- scattered spaces;
- metric spaces;
- 2^{ω_1} [Losert, 79];
- 2^c [Fremlin, 00's].

・ロン ・回と ・ヨン ・ヨン

Uniform distribution

Fact

A measure μ is in $S_1(K)$ if and only if it has a uniformly distributed sequence.

Theorems

Many spaces K have property: $P(K) = S_1(K)$. E.g.

- scattered spaces;
- metric spaces;
- 2^{\u03c6}1 [Losert, 79];
- 2^c [Fremlin, 00's].

イロト イヨト イヨト イヨト

Problems

Theorem (Plebanek, PBN)

If K is Koppelberg compact, then P(K) = S(K).

Problem 1

Is there a space K such that

 $S_1(K) \neq S(K)$?

Problem 2

Is there a space K such that

$$S_1(K) \neq S(K) = P(K)?$$

・ロト ・回ト ・ヨト ・ヨト

Problems

Theorem (Plebanek, PBN)

If K is Koppelberg compact, then P(K) = S(K).

Problem 1

Is there a space K such that

 $S_1(K) \neq S(K)$?

Problem 2

Is there a space K such that

$$S_1(K) \neq S(K) = P(K)?$$

・ロン ・回と ・ヨン ・ヨン

Problems

Theorem (Plebanek, PBN)

If K is Koppelberg compact, then P(K) = S(K).

Problem 1

Is there a space K such that

 $S_1(K) \neq S(K)$?

Problem 2

Is there a space K such that

$$S_1(K) \neq S(K) = P(K)?$$

・ロト ・回ト ・ヨト ・ヨト

Asymptotic density

Asymptotic density function

We say that $A \subseteq \mathbb{N}$ has a density if the limit

$$\lim_{n\to\infty}\frac{|A\cap\{1,2,\ldots,n\}|}{n}=d(A)$$

exists.

Density and weak* convergence

If every element of a Boolean algebra $\mathfrak{A} \subseteq P(\mathbb{N})$ has a density, then for μ defined on the Stone space K of \mathfrak{A} by $\mu(\widehat{A}) = d(A)$ for each $A \in \mathfrak{A}$ we have

$$\mu(\widehat{A}) = \lim_{n \to \infty} \frac{\delta_1(A) + \ldots + \delta_n(A)}{n}.$$

Asymptotic density

Asymptotic density function

We say that $A \subseteq \mathbb{N}$ has a density if the limit

$$\lim_{n\to\infty}\frac{|A\cap\{1,2,\ldots,n\}|}{n}=d(A)$$

exists.

Density and weak* convergence

If every element of a Boolean algebra $\mathfrak{A} \subseteq P(\mathbb{N})$ has a density, then for μ defined on the Stone space K of \mathfrak{A} by $\mu(\widehat{A}) = d(A)$ for each $A \in \mathfrak{A}$ we have

$$\mu(\widehat{A}) = \lim_{n \to \infty} \frac{\delta_1(A) + \ldots + \delta_n(A)}{n}.$$

Asymptotic density

Density and weak* convergence

If every element of a Boolean algebra $\mathfrak{A} \subseteq P(\mathbb{N})$ has a density, then for μ defined on the Stone space K of \mathfrak{A} by $\mu(\widehat{A}) = d(A)$ for each $A \in \mathfrak{A}$ we have

$$\mu(\widehat{A}) = \lim_{n \to \infty} \frac{\delta_1(A) + \ldots + \delta_n(A)}{n}$$

Corollary

$$\mu \in S_1(\mathbb{N}) \subseteq S_1(K).$$

イロン イヨン イヨン イヨン

3

Asymptotic density

Density and weak* convergence

If every element of a Boolean algebra $\mathfrak{A} \subseteq P(\mathbb{N})$ has a density, then for μ defined on the Stone space K of \mathfrak{A} by $\mu(\widehat{A}) = d(A)$ for each $A \in \mathfrak{A}$ we have

$$\mu(\widehat{A}) = \lim_{n \to \infty} \frac{\delta_1(A) + \ldots + \delta_n(A)}{n}$$

Corollary

$$\mu \in S_1(\mathbb{N}) \subseteq S_1(K).$$

イロト イヨト イヨト イヨト

Asymptotic density

Density and weak* convergence

If every element of a Boolean algebra $\mathfrak{A} \subseteq P(\mathbb{N})$ has a density, then for μ defined on the Stone space K of \mathfrak{A} by $\mu(\widehat{A}) = d(A)$ for each $A \in \mathfrak{A}$ we have

$$\mu(\widehat{A}) = \lim_{n \to \infty} \frac{\delta_1(A) + \ldots + \delta_n(A)}{n}$$

Corollary

$$\mu \in S_1(\mathbb{N}) \subseteq S_1(K).$$

イロト イヨト イヨト イヨト

Limit of densities

Relative density

Fix a sequence $(B_n)_{n \in \mathbb{N}}$ of infinite and pairwise disjoint subsets of \mathbb{N} such that $\bigcup_n B_n = \mathbb{N}$. Let $n \in \mathbb{N}$. Enumerate $B_n = \{b_1 < b_2 < \ldots\}$. For $A \subseteq B_n$ let

$$d_n(A) = d(\{i \colon b_i \in A\}).$$

Limit of densities

Let $d'(A) = \lim_{n \to \infty} d_n(A)$ provided this limit exist. If each element A of a Boolean algebra $\mathfrak{A} \subseteq P(\mathbb{N})$ is such that d'(A) exists, then $\mu \in P(Stone(\mathfrak{A}))$ defined by

$$\mu(\widehat{A}) = d'(A)$$

is in $S_2(\mathbb{N})$

Limit of densities

Relative density

Fix a sequence $(B_n)_{n \in \mathbb{N}}$ of infinite and pairwise disjoint subsets of \mathbb{N} such that $\bigcup_n B_n = \mathbb{N}$. Let $n \in \mathbb{N}$. Enumerate $B_n = \{b_1 < b_2 < \ldots\}$. For $A \subseteq B_n$ let

$$d_n(A) = d(\{i \colon b_i \in A\}).$$

Limit of densities

Let $d'(A) = \lim_{n\to\infty} d_n(A)$ provided this limit exist. If each element A of a Boolean algebra $\mathfrak{A} \subseteq P(\mathbb{N})$ is such that d'(A) exists, then $\mu \in P(Stone(\mathfrak{A}))$ defined by

$$\mu(\widehat{A}) = d'(A)$$

is in $S_2(\mathbb{N})$

Limit of densities

Relative density

Fix a sequence $(B_n)_{n \in \mathbb{N}}$ of infinite and pairwise disjoint subsets of \mathbb{N} such that $\bigcup_n B_n = \mathbb{N}$. Let $n \in \mathbb{N}$. Enumerate $B_n = \{b_1 < b_2 < \ldots\}$. For $A \subseteq B_n$ let

$$d_n(A) = d(\{i \colon b_i \in A\}).$$

Limit of densities

Let $d'(A) = \lim_{n\to\infty} d_n(A)$ provided this limit exist. If each element A of a Boolean algebra $\mathfrak{A} \subseteq P(\mathbb{N})$ is such that d'(A) exists, then $\mu \in P(Stone(\mathfrak{A}))$ defined by

$$\mu(\widehat{A})=d'(A)$$

is in $S_2(\mathbb{N})$

The domain of measure

Definition

Let \mathcal{F} be the filter of density 1 sets and let \mathbb{C} be an isomorphic image (via φ) of the Cantor algebra $alg(2^{<\omega})$ such that

 $d(\varphi(\sigma)) = 1/2^{|\sigma|}$

for each $\sigma \in 2^{<\omega}$.

Definition

For each $n \in \mathbb{N}$, $B_n = \{b_1 < b_2 < \ldots\}$ and $A \subseteq \mathbb{N}$ let

$$A^{n} = \{b_{i} : i \in A\}$$
$$\mathcal{F}^{n} = \{F^{n} : F \in \mathcal{F}\}$$
$$\mathbb{C}^{n} = \{C^{n} : C \in \mathbb{C}\}$$

The domain of measure

Definition

Let \mathcal{F} be the filter of density 1 sets and let \mathbb{C} be an isomorphic image (via φ) of the Cantor algebra $alg(2^{<\omega})$ such that

 $d(\varphi(\sigma)) = 1/2^{|\sigma|}$

for each $\sigma \in 2^{<\omega}$.

Definition

For each $n \in \mathbb{N}$, $B_n = \{b_1 < b_2 < \ldots\}$ and $A \subseteq \mathbb{N}$ let

$$A^{n} = \{b_{i} : i \in A\}$$
$$\mathcal{F}^{n} = \{F^{n} : F \in \mathcal{F}\}$$
$$\mathbb{C}^{n} = \{C^{n} : C \in \mathbb{C}\}$$

First step

Definition

Let \mathbb{B}_n be the Boolean algebra generated by \mathbb{C}^n and \mathcal{F}^n , $n \in \mathbb{N}$.

Let $\mathcal U$ consist of sets $U \subseteq \mathbb N$ such that

- $U \cap B_n \in \mathbb{B}_n$ for each n;
- $\lim_{n\to\infty} d_n(U\cap B_n) = 1.$

Let \mathbb{A}_0 be the Boolean algebra generated by $\mathcal U$ (and $\mathcal K_0$ - its Stone space).

- \mathcal{U} is an ultrafilter on \mathbb{A}_0 ;
- $\mu = \delta_{\mathcal{U}};$
- $\mu \in S_2(\mathbb{N});$
- $\mu \notin S_1(K_0 \setminus \{\mathcal{U}\}).$

First step

Definition

Let \mathbb{B}_n be the Boolean algebra generated by \mathbb{C}^n and \mathcal{F}^n , $n \in \mathbb{N}$. Let \mathcal{U} consist of sets $U \subseteq \mathbb{N}$ such that

- $U \cap B_n \in \mathbb{B}_n$ for each n;
- $\lim_{n\to\infty} d_n(U\cap B_n) = 1.$

Let \mathbb{A}_0 be the Boolean algebra generated by $\mathcal U$ (and $\mathcal K_0$ - its Stone space).

- \mathcal{U} is an ultrafilter on \mathbb{A}_0 ;
- $\mu = \delta_{\mathcal{U}};$
- $\mu \in S_2(\mathbb{N});$
- $\mu \notin S_1(K_0 \setminus \{\mathcal{U}\}).$

First step

Definition

Let \mathbb{B}_n be the Boolean algebra generated by \mathbb{C}^n and \mathcal{F}^n , $n \in \mathbb{N}$. Let \mathcal{U} consist of sets $U \subseteq \mathbb{N}$ such that

- $U \cap B_n \in \mathbb{B}_n$ for each n;
- $\lim_{n\to\infty} d_n(U\cap B_n) = 1.$

Let \mathbb{A}_0 be the Boolean algebra generated by $\mathcal U$ (and $\mathcal K_0$ - its Stone space).

- \mathcal{U} is an ultrafilter on \mathbb{A}_0 ;
- $\mu = \delta_{\mathcal{U}};$
- $\mu \in S_2(\mathbb{N});$
- $\mu \notin S_1(K_0 \setminus \{\mathcal{U}\}).$

First step

Definition

Let \mathbb{B}_n be the Boolean algebra generated by \mathbb{C}^n and \mathcal{F}^n , $n \in \mathbb{N}$. Let \mathcal{U} consist of sets $U \subseteq \mathbb{N}$ such that

- $U \cap B_n \in \mathbb{B}_n$ for each n;
- $\lim_{n\to\infty} d_n(U\cap B_n) = 1.$

Let \mathbb{A}_0 be the Boolean algebra generated by $\mathcal U$ (and $\mathcal K_0$ - its Stone space).

- \mathcal{U} is an ultrafilter on \mathbb{A}_0 ;
- $\mu = \delta_{\mathcal{U}};$
- $\mu \in S_2(\mathbb{N});$
- $\mu \notin S_1(K_0 \setminus \{\mathcal{U}\}).$

First step

Definition

Let \mathbb{B}_n be the Boolean algebra generated by \mathbb{C}^n and \mathcal{F}^n , $n \in \mathbb{N}$. Let \mathcal{U} consist of sets $U \subseteq \mathbb{N}$ such that

- $U \cap B_n \in \mathbb{B}_n$ for each n;
- $\lim_{n\to\infty} d_n(U\cap B_n) = 1.$

Let \mathbb{A}_0 be the Boolean algebra generated by $\mathcal U$ (and $\mathcal K_0$ - its Stone space).

- \mathcal{U} is an ultrafilter on \mathbb{A}_0 ;
- $\mu = \delta_{\mathcal{U}};$
- $\mu \in S_2(\mathbb{N});$
- $\mu \notin S_1(K_0 \setminus \{\mathcal{U}\}).$

First step

Definition

Let \mathbb{B}_n be the Boolean algebra generated by \mathbb{C}^n and \mathcal{F}^n , $n \in \mathbb{N}$. Let \mathcal{U} consist of sets $U \subseteq \mathbb{N}$ such that

- $U \cap B_n \in \mathbb{B}_n$ for each n;
- $\lim_{n\to\infty} d_n(U\cap B_n) = 1.$

Let \mathbb{A}_0 be the Boolean algebra generated by $\mathcal U$ (and $\mathcal K_0$ - its Stone space).

- \mathcal{U} is an ultrafilter on \mathbb{A}_0 ;
- $\mu = \delta_{\mathcal{U}};$
- $\mu \in S_2(\mathbb{N});$
- $\mu \notin S_1(K_0 \setminus \{\mathcal{U}\}).$

First step

Definition

Let \mathbb{B}_n be the Boolean algebra generated by \mathbb{C}^n and \mathcal{F}^n , $n \in \mathbb{N}$. Let \mathcal{U} consist of sets $U \subseteq \mathbb{N}$ such that

- $U \cap B_n \in \mathbb{B}_n$ for each n;
- $\lim_{n\to\infty} d_n(U\cap B_n) = 1.$

Let \mathbb{A}_0 be the Boolean algebra generated by $\mathcal U$ (and $\mathcal K_0$ - its Stone space).

- \mathcal{U} is an ultrafilter on \mathbb{A}_0 ;
- $\mu = \delta_{\mathcal{U}};$
- $\mu \in \mathcal{S}_2(\mathbb{N});$
- $\mu \notin S_1(K_0 \setminus \{\mathcal{U}\}).$

Second step

Theorem (Fremlin)

There is a monomorphism mod ${\mathcal F}$

 $\psi\colon\mathfrak{R}\to\mathsf{Sets}$ with density

such that $d(\psi(R)) = \lambda(R)$ for each R.

Final step

Extend A_0 to A by all sets of the form

 $\bigcup_{n} (\psi(R))^{n}$

for every $R \in \mathfrak{R} \setminus \{0, 1\}$. Let K be its Stone space.

・ロン ・回と ・ヨン・

Second step

Theorem (Fremlin)

There is a monomorphism mod ${\mathcal F}$

 $\psi\colon\mathfrak{R}\to\mathsf{Sets}$ with density

such that $d(\psi(R)) = \lambda(R)$ for each R.

Final step

Extend \mathbb{A}_0 to \mathbb{A} by all sets of the form

 $\bigcup_n (\psi(R))^n$

for every $R \in \mathfrak{R} \setminus \{0,1\}$. Let K be its Stone space.

<ロ> (日) (日) (日) (日) (日)

The result

Corollary

Let $D \subseteq K$ be the (closed) set generated by \mathcal{U} .

- $\mu \in S_2(\mathbb{N});$
- $\mu \notin S_1(K \setminus D);$
- $\mu \notin S_1(D)$;
- finally, $\mu \notin S_1(K)$.

Remark

In the same manner for every $\alpha < \omega_1$ we can produce a space Kand a measure μ such that $\mu \in S_{\alpha}(K) \setminus S_{\beta}(K)$ for each $\beta < \alpha$.

・ロン ・回 と ・ ヨ と ・ ヨ と

The result

Corollary

Let $D \subseteq K$ be the (closed) set generated by \mathcal{U} .

- $\mu \in S_2(\mathbb{N});$
- $\mu \notin S_1(K \setminus D)$;
- $\mu \notin S_1(D)$;
- finally, $\mu \notin S_1(K)$.

Remark

In the same manner for every $\alpha < \omega_1$ we can produce a space Kand a measure μ such that $\mu \in S_{\alpha}(K) \setminus S_{\beta}(K)$ for each $\beta < \alpha$.

・ロン ・回 と ・ ヨ と ・ ヨ と

The result

Corollary

Let $D \subseteq K$ be the (closed) set generated by \mathcal{U} .

- $\mu \in S_2(\mathbb{N});$
- $\mu \notin S_1(K \setminus D)$;
- $\mu \notin S_1(D)$;
- finally, $\mu \notin S_1(K)$.

Remark

In the same manner for every $\alpha < \omega_1$ we can produce a space Kand a measure μ such that $\mu \in S_{\alpha}(K) \setminus S_{\beta}(K)$ for each $\beta < \alpha$.

・ロン ・回 と ・ ヨ と ・ ヨ と

The result

Corollary

Let $D \subseteq K$ be the (closed) set generated by \mathcal{U} .

- $\mu \in S_2(\mathbb{N});$
- $\mu \notin S_1(K \setminus D)$;
- $\mu \notin S_1(D)$;
- finally, $\mu \notin S_1(K)$.

Remark

In the same manner for every $\alpha < \omega_1$ we can produce a space Kand a measure μ such that $\mu \in S_{\alpha}(K) \setminus S_{\beta}(K)$ for each $\beta < \alpha$.

・ロト ・回ト ・ヨト ・ヨト

The result

Corollary

Let $D \subseteq K$ be the (closed) set generated by \mathcal{U} .

- $\mu \in S_2(\mathbb{N});$
- $\mu \notin S_1(K \setminus D)$;
- $\mu \notin S_1(D)$;
- finally, $\mu \notin S_1(K)$.

Remark

In the same manner for every $\alpha < \omega_1$ we can produce a space Kand a measure μ such that $\mu \in S_{\alpha}(K) \setminus S_{\beta}(K)$ for each $\beta < \alpha$.

イロン イヨン イヨン イヨン

Better example under CH

Theorem (Plebanek)

Under CH there is a space K such that

- there is $\mu \in S_2(K) \setminus S_1(K)$
- S(K) = P(K).

・ロン ・回 と ・ ヨ と ・ ヨ と

3

The end

Thank you for your attention!

Slides and a preprint concerning the subject will be available on

http://www.math.uni.wroc.pl/~pborod

・ロト ・回ト ・ヨト ・ヨト